INTRODUCTION

Acute leukemias have long been recognized as suitable targets for immunotherapy. Administration of cationic liposome-DNA complexes (JVRS-100) elicits cytokines of the Tα1 subset, especially IL-12, IFN-gamma and IFN-alpha. These cytokines are particularly important in mediating host defense against cancer. In multiple experiments using the 32Dp210-GFP model, intravenous dosing of JVRS-100 prevented or significantly delayed death from leukemia when delivered between 7 and 15 days following leukemic challenge. Specifically, control animals died at ~19 days of leukemia whereas 80% of similarly leukemic challenged but JVRS-100 treated animals (1 ug) were alive ~40 days with weekly treatment beginning at day 15 (4 days prior to expected mortality). Animals dying of leukemia had splenomegaly and leukemic infiltration of spleen and liver. The GFP expression allowed quantification of leukemia in peripheral blood (PB). At day 12 following challenge PB leukocytes were ~30% GFP positive with either no treatment, or 0.1 ug JVRS-100, <0.1% with 1.0 ug or 5.0 ug JVRS-100 treatment at days 2 and 9. Furthermore there is a similar cell activation profile and cytokine response in vitro following exposure of human PBMCs to JVRS-100 as is observed following in vivo administration of JVRS-100 to mice, making this immunostimulation technology a promising candidate for product development and eventual clinical evaluation.

This work was supported by NCI grant 1R43CA114803-01A1

RESULTS

Histology Following Leukemia Challenge of JVRS-100 (CLDC) Treatment (no challenge)

Survival Following Low-Dose IV Therapy with JVRS-100 (CLDC)

Immunological Memory Following JVRS-100 (CLDC) Treatment

Cytokine Profiles of Human PBMC Stimulated with JVRS-100

Dose Dependent Survival Benefit of JVRS-100 (CLDC) Treatment

Increased Survival of Mice Treated with CLDC Following EL4 Lymphoma Challenge

Animals received IV JVRS-100 at 2 doses of 0.1ug, 1ug, and 5ug day 2 and 9 following 32D/RAd-GFP challenge. Survival benefit was observed in a dose dependent relationship.

Mice were challenged with 32Dp210-GFP at day 0. Control group (red) died at day 18 to 20 post challenge. Mice treated with 1ug JVRS-100 IV weekly after 32Dp210-GFP challenge survived until day 67.

Mice were challenged with 32Dp210 on day -60; with the exception of the control group which received no challenge (blue). Mice were treated IV with JVRS-100 on Day -46 and -32; with the exception of the no treatment group (red). On Day 0 all mice were challenged with an aggressive 32Dp210-GFP to see if there was a difference in survival among untreated and treated groups in a dose dependent manner. As can be seen above, no treatment (red), 0.1ug treatment (brown), and 2x10ug JVRS-100 IV with no initial 32Dp210 challenge (blue) died at approximately Day 20. Mice challenged with 32p210 and treated with 5ug or 10ug JVRS-100 showed a 10-17 day increase in survival. This increase in survival was likely due to a specific anti-tumor response.

CONCLUSIONS

JVRS-100 has been shown to be an immunostimulant, activating antigen presenting cells and resulting in a broad based Tα1 cytokine response. This anti-leukemic treatment effect is demonstrated here in transplanted murine models. While the treatment is highly effective and reproducible, the determination of mechanism of action, extension of these observations to other models and immunotherapy of human neoplasms is clearly of interest and importance.